The Combined Magneto Hydrodynamic and Electric Field Effect on an Unsteady Maxwell Nanofluid Flow over a Stretching Surface under the Influence of Variable Heat and Thermal Radiation
نویسندگان
چکیده
The manuscript is a presentation of the combined effect of magnetic and electric field on unsteady flow of Maxwell nanofluid over a stretching surface with thermal radiations. The flow of Maxwell nanofluid is assumed to be in an unsteady state. The basic governing equations changed to a group of differential equations, using proper similarity variables. The obtained modeled equations are nonlinear and coupled. An optimal approach is used to acquire the solution of the modeled problem analytically. The effects of electric field, magnetic field and thermal radiations on Maxwell nanofluid are the main focus in this study. The impact of the Skin friction on velocity profile, Nusselt number on temperature profile and Sherwood number on concentration profile are studied numerically. The influential behavior of the unsteady parameter λ, magnetic parameter M, electric parameter E, radiation parameter Rd, Maxwell parameter β, thermophoresis parameter Nt, Prandtl number Pr, Schmidt number Sc, space dependent coefficient A and temperature dependent coefficient B on the velocity f (h), concentration φ(η) and temperature θ(η) are analyzed and studied. The consequences are drawn graphically to see the physical significance of the problem.
منابع مشابه
Unsteady Hydromagnetic Flow of Eyring-Powell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation
The present analysis deals with an unsteady magnetohydrodynamic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet. Effects of thermal radiation, Joule heating, and chemical reaction are considered. The effects of Brownian motion and thermophoresis on the flow over the permeable stretching sheet are discussed. Using Runge-Kutta fourth-order along with shooting technique...
متن کاملThe Influence of Thermal Radiation on Mixed Convection MHD Flow of a Casson Nanofluid over an Exponentially Stretching Sheet
The present article describes the effects of thermal radiation and heat source/sink parameters on the mixed convective magnetohydrodynamic flow of a Casson nanofluid with zero normal flux of nanoparticles over an exponentially stretching sheet along with convective boundary condition. The governing nonlinear system of partial differential equations along with boundary conditions...
متن کاملInclined Lorentzian force effect on tangent hyperbolic radiative slip flow imbedded carbon nanotubes: lie group analysis
The present paper focuses on numerical study for an inclined magneto-hydrodynamic effect on free convection flow of a tangent hyperbolic nanofluid embedded with Carbon nanotubes (CNTs) over a stretching surface taking velocity and thermal slip into account. Two types of nanoparticles are considered for the study; they are single and multi-walled nanotubes. The presentation of single-parameter g...
متن کاملMagneto Prandtl nanofluid past a stretching surface with non-linear radiation and chemical reaction
In this article, we examined the behavior of chemical reaction effect on a magnetohydrodynamic Prandtl nanofluid flow due to stretchable sheet. Non-linear thermally radiative term is accounted in energy equation. Constructive transformation is adopted to formulate the ordinary coupled differential equations system. This system of equations is treated numerically through Runge Kutta Fehlberg-45 ...
متن کاملUnsteady convective flow for MHD powell-eyring fluid over inclined permeable surface
The current article has investigated unsteady convective flow for MHD non-Newtonian Powell-Eyring fluid embedded porous medium over inclined permeable stretching sheet. We have pondered the thermophoresis parameter, chemical reaction, variable thermal conductivity, Brownian motion, variable heat source and variable thermal radiation in temperature and concentration profiles. Using similar trans...
متن کامل